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SUMMARY 

A Galerkin finite element method is described for studying the stability of two superposed immiscible 
Newtonian fluids in plane Poiseuille flow. The formulation results in an algebraic eigenvalue problem of the 
form A1’ + B1+ C = 0 which, after transforming to a standard generalized eigenvalue problem, is solved by 
the QR algorithm. The numerical results are in good agreement with previous asymptotic results. Additional 
results show that the finite element method is ideally suited for studying linear stability of superposed fluids 
when parameters characterizing the flow fall outside the range amenable to perturbation methods. The 
applicability of the finite element method to similar eigenvalue problems is demonstrated by analysing the 
steady-state spatial development of two superposed fluids in a channel. 
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INTRODUCTION 

Yih’ showed by perturbation methods that plane Poiseuille flow of two superposed liquids of 
different viscosity is unstable to a long wavelength interfacial mode for arbitrary small values of the 
Reynolds number. Although this instability is related to the jump in viscosity across the interface, 
its growth rate (or in some cases lack thereof) is dependent in a complicated way on additional 
parameters such as the layer thickness ratio, the density ratio of the liquids, and whether or not 
density stratification is stabilizing. Analysing how these parameters as well as others influence the 
growth rate by perturbation methods is ordinarily limited by the smallness of some appropriate 
parameter. In Yih’s analysis the small parameter was the wave number, whereas in Nakaya and 
Hasegawa’s’ study the wave number and the Reynolds number were used. Hooper3 has also made 
use of a small wave number expansion to determine the stability of superposed fluids. Invariably, 
because of the attendant tedious algebra, perturbation methods tend to be inefficient for studying 
flow stability when the number of parameters characterizing the flow becomes large, as is the 
case considered here, 

In this paper we describe a Galerkin finite element method for studying linear stability of plane 
Poiseuille flow of two superposed liquids. Linear stability is described by an Orr-Sommerfeld 
equation for each layer. These equations are coupled through the traction and kinematic boundary 
conditions imposed at the interface separating the two liquids. Our work parallels the recent study 
of Li and Kot4 who analysed linear stability of plane Poiseuille flow by the finite element method. 
There are obvious differences, however. In particular, the presence of a liquid/liquid interface 
introduces several additional complications in the finite element formulation of the boundary 
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conditions. The complications arise from discontinuities in the eigenfunctions at the interface. A 
method for handling these discontinuities is described below. We compare our calculated 
eigenvalues for the most unstable mode with those of Yih, and report new results on flow stability 
when the disturbance wave number is no longer small and when the fluid layers have disparate 
thicknesses. 

Since our formulation reduces to the single fluid case when appropriate values are assigned to 
the parameters, we also report on the accuracy of the finite element method for computing 
eigenvalues of the Orr-Sommerfeld equation for plane Poiseuille flow for modes other than the 
most unstable (Li and Kot4 reported results only for the most unstable mode). This is done by 
comparing our calculated eigenvalues with those of Orszag,' which are reputed to be the most 
accurate available in the literature. 

Eigenvalue problems resembling the Orr-Sommerfeld equation also arise in the study of 
stationary perturbations from rectilinear flow. A detailed analysis of such problems was first given 
by Wilson6 who analysed how stationary perturbations from plane Poiseuille flow decay with 
distance downstream. He solved by asymptotic methods for the limiting cases of small and large 
Reynolds number the eigenvalue problem that results from linearizing the steady Navier-Stokes 
equations about the fully developed flow. Bramley and Dennis' solved the identical problem using 
a spectral method (cf. Orszag') for values of the Reynolds number between 0 and 2000, but, as they 
note, their results are not in full agreement with Wilson's asymptotic expression for the dominant 
eigenvalue at low Reynolds number. 

As a further demonstration of the versatility of the finite element method for analysing 
eigenvalue problems of the Orr-Sommerfeld type, we discuss also the steady-state spatial 
development of two-layer flow in a channel. In contrast to the stability problem, the eigenvalue 
problem for the stationary perturbations is non-linear in the eigenvalue. We compare and discuss 
our calculated values for the dominant eigenvalue with Wilson's asymptotic results for a single 
layer. 

STABILITY FORMULATION AND FINITE ELEMENT ANALYSIS 

The base flow consists of two parabolic profiles non-dimensionalized by the interfacial velocity U,: 

UI = 1 + a1y + b l y 2 ,  U 2  = 1 + a2y  + b 2 y 2 ,  
where 

m + n  b m - n 2  
a l  =- 

n + n 2 '  I -  
+ n 2 ,  a, = al/m, b2 = b l / m .  

The subscript 1 denotes the upper fluid, 2 the lower fluid; m and n are the viscosity and thickness 
ratios defined in terms of the lower fluid with respect to the upper. The co-ordinate y is made 
dimensionless with d , ,  the layer thickness of the upper fluid: see Figure 1. 

To test for stability, the Navier-Stokes equations and boundary conditions are linearized 
about the base flow (1). A stream function for the disturbance in each layer is assumed to be of the 
form f(y) exp [ia(x - ct ) ] ,  where LY is the dimensionless wave number of the disturbance in the flow 
direction x, and c the dimensionless complex wave speed. When this form for the stream function is 
substituted into the linearized Navier-Stokes equations, the stability formulation results in two 
equations of the Orr-Sommerfeld form for the upper and lower fluids respectively: 

$"-2a2$"+a4$-iaR{(Ul -c) ($"-a2$)-  U;$}  = O  (3) 
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The primes on $,$ and Ui denote differentiation with respect to the co-ordinate y. 

of velocities and stresses at the interface are 
The linearized boundary conditions expressing non-slip at the channel walls and continuity 

@'+a2$=m($"+a2$), at y = o  (9) 

(10) 

- iaR[(c - 1 ) & +  a,$]  - (@" - a'&) + 2a'& 

+ iaRr[(c - 1)$' + a,$) + m(@" -a'$') - 2ma2$' 

= iaR(F + a2S)4/(c - l), at y = 0. 

Here r = p 2 / p 1  is the density ratio, R = p1 Uod,/,ul the Reynolds number, and F = ( I  - l)gd,/U& 
S = a/p,d, Ug the dimensionless groups expressing the effects of gravity g and surface tension 
a. Equations (3)-( 10) define an eigenproblem for the eigenfunctions $(y)  and $(y), and the 
complex eigenvalue c = cR + ic,. The flow is linearly unstable when ci is positive and neutrally 
stable when ci = 0. The eigenvalue c is a function of r, R, F ,  S,  a,m and r. Additional details 
concerning the derivation of the above equations are given by Yih.' 

The finite element equations are determined from the weak formulation of the Orr-Sommerfeld 
equations, which includes two integrations by parts. The required continuity for the interpolation 
functions is then C'. However, with this formulation the first derivatives are discontinuous at 
the interface (equation (8)), and for this reason it is convenient to treat the two layers 
separately. The procedure is to split up the interfacial boundary conditions (9) and (10) by 
introducing additional unknowns. For example, equation (9) is written m($" + a,$) - u1 = 0 
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and $ ” + u z $ - u ,  =0, where u1 is an additional unknown. Here we present the treatment 
for the lower fluid while the one for the upper proceeds along exactly the same steps. In Figure 1 
the finite element discretization is presented. The number of nodes in each layer is taken to be 
the same. 

If $ is the approximation to 6, then the residual resulting from (4) at  the element level is 

r l  = m$” - 2aZm$” + a4m$ - iaRr{ ( U ,  - c)($” -az$ )  - U $ $ )  

for element s = 1 + t - 1. Similarly, owing to the discontinuities in the second and third derivatives 
of the approximation function 

and 
r2 = - m$”‘li- + m$’”li+ 

r3 = m$”li- - m$”li+ 

are the residuals at each node i = 1 +t - 1. At the interfacial node t 

r4 = m$“ + ma2$ - u1 

r5 = - m($” - a’$’) + 2a2m$‘ - iaRr[(c - l)$’ + a,$] + u,. 
and 

The weighted residual statement becomes 

Here Is is the element length. 
Substituting the expressions for the residuals into (1 1) and integrating by parts twice we get 

R, = ‘2 j {m$”Nl  + 2a2m$’NL + a4m$N,  
s = l  1, 

+ iaRr[CJ,$’NL + U;$’N,  + a 2 U 2 $ N ,  + U;$N,I  (12) 

- iaRrc[$’N, + a 2 $ N , ] }  dy + [2a2m$’N, + iaRr(U, - c)$‘N, - m$”’N, 

+ m$”Nhll + [ (ma2$ - u,)W, + ma2$”, + ( - iaRra,$ + U , ) N , ] ~  = 0. 

The approximation for $ over each element is 

* = *IN1 + * z N ,  + *3N3 + *4N4 (13) 

where N i  are cubic Hermite polynomials with the required C’ continuity and $, = $;, $4 = $\. In 
this way we arrive at the element contributions to the weighted residuals which, for elements 
s = 2 + t - 2, have the form 

Ri = (J - cM)\lr. (14) 

Here J and M are 4 x 4 matrices and their final form is given by equations (19) and (20). 
At element 1 we choose to satisfy the boundary conditions (6)  exactly, and therefore replace the 

first two equations in (14) for s = 1 with $1 = 0 and $, = 0. 
At element t - 1, the residuals in (14) for n = 3 and 4 are 
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i =  1 
Rk-’ = c (J4i - c M , , ) $ ~  + - u1 = 0. (16) 

Following exactly the same steps for the upper fluid we replace the last two residuals at element 
N E  by the exact conditions (5 )  while the first two residuals at element t have the form 

Adding equations (15) to (17) and (16) to (18) we eliminate the unknowns u1 and u,, and using the 
boundary conditions (7) and (8) we replace 4b3 by 41 and $4 by 4’ - 4, (a2  - al)/(c - 1). with this 
procedure, matrix changes occur only at element t - 1. The global matrices are thus easily formed 
by storing the element matrices in their appropriate positions. The procedure we have adopted 
ofintroducing intermediate unknowns u1 and u, is not unique. For example, one could equally well 
arrive at the same formulation by a straightforward approach of weighting the equations and the 
interfacial conditions (9) and (10). In this case one would have to introduce four unknowns at 
node t ,  namely 4(0), 4’(0), $(O), $’(O), instead of two, resulting in matrices of order 4 x 6 for 
elements t - 1 and t. Subsequently, two of these unknowns could be eliminated by use of (7) and (8) 
to achieve matrix contraction. The advantage of introducing intermediate unknowns is that it 
avoids the bookkeeping associated with matrix contraction and, in addition, the method ensures 
that there are an equal number of unknowns, interpolating functions, and weighting functions. 
When matrix construction is not carried out, the eigenvalue problem is singular. 

To accommodate the inversion of the global matrix M, all the equations are divided by iaR to 
ensure that M is real. Hence at the element level we have 

J i j  = r{(U,NIN> + UzNiN> + aZU,NiNj + U;NiNj) s, 
(19) 

1 
(mN;N; + 2a2mNiN> + a4mNiNj)}dy _ _  

aR 
and 

M . .  = r(NiNJ + aZNiNj)dy. 
” JIs 

The above equations hold for elements s = 1 + t  - 1, while upon switching to the upper fluid 
we simply replace U ,  by U ,  and set r = m = 1. 

At the element t - 1, the following additions are made to (19): 

J l  3 = sl 3 + (I14 - cM 14)(a1 - aZ)/(c - l )  

J 2 3  = I23 + <J24 - cM24)(a1 - a2)/(c - 1) 
J 3 ,  = s3, + (734 - cM3,)(a1 - a J ( c  - 1) + a, - ra, + (F + a2S)/(c - 1)  - iarn(a, - a,)/R(c - 1 )  

J , ,  = J34 - ia(m - 1)/R 

J,,  = J43 + (J44 - cM4,)(a1 - a J ( c  - 1) - ia(m - 1)/R 

where Jij is given by (19). 
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For the case of a single fluid these additions are equal to zero as a, = a, = 0, rn = r = 1, and 

Finally, because the eigenvalue c appears in the denominator of some of the additional terms, 
F = S = 0. The formulation is then identical to that of Li and K o ~ . ~  

we multiply (14) by c - 1 so that the matrix eigenvalue problem has the form 

(A,cZ + A,c + A,)$ = 0 (21) 
where A, = - M, A, = J + M and A, = - J. This is equivalent to 

(C, - CC,)JI = 0 
Where 

C, and C, are matrices of the order n x n, where n = 4 N E  - 4. If we further write (C;'C, - cI)$ = 
0 we have a standard eigenvalue for the matrix C, C, which is complex and non-Hermitian. 
For the solution of the above problem the QR algorithm was used (e.g. Smith et ~ 1 . ' ) .  

RESULTS 

Yih carried out an asymptotic analysis of (3H10) for long wave disturbances (a << 1) for fluids of equal 
density and equal layer thickness. He showed that there is an unstable interfacial mode induced by 
the viscosity difference that persists at arbitrarily small Reynolds numbers. 

In Table I and Figure 2 we compare our calculated eigenvalues for the most unstable mode with 
those reported by Yih.' In all the calculations the matrices were of the order 52 x 52. Convergence 
was tested by increasing the number of elements and the order of matrices accordingly. The 
viscosity ratio was varied from 2 to 60. The remaining parameters appearing in (3)-(10) were 
assigned the following values: R = 1, r = n = 1, F = S = 0. Table I shows that the real part of the 
eigenvalue calculated by the finite element method agrees with Yih's value to five decimal places 
when a = 0401. For larger wave numbers, the agreement is not as good. This is to be expected 
because the error in Yih's value for the real part is O(a2). For the complex part, Yih gives the 
formula ci = 8aRH,, where H ,  is found from his equation (52).' In Figure 2 we have plotted H ,  
against the viscosity ratio. The discrete data points are our calculations of ci/8aR. 
These data points when expressed in terms of ci agree with Yih's values for ci to at least six decimal 
places for the studied range 2 < rn < 60. For example, for rn = 60 the finite element method gives 
ci = 8.269 x Additional calculations for in = 100 
were also found to be in good agreement. 

Unlike Yih's perturbation approach, the finite element method (or any other numerical 
technique for that matter) is not restricted to small wave numbers. In Figure 3 we show the 

Table I. The real part of the eigenvalue c = cR + ici for the most unstable mode as a function of 
the viscosity ratio m. Finite element calculations for R = 1, r = n = 1, F = S = 0 

while Yih's result is ci = 8.26908 x 

Viscosity ratio, m CR(Yih') C,(FEM, CI = 0.01) CR(FEM,a = 0.001) 

2 
4 

10 
20 
40 
60 

1.060606 1.060603 7 1.0606060 
1.246575 1.2465622 1.2465752 
1.672 199 1.672 1406 1.6721986 
2.060206 2.0600803 2.0602044 
2.407682 2.4074764 2.4076796 
2.567665 2.5674167 2.5676625 
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Figure 2. The dependence of Yih's parameter H,(=ci/8aR) on the viscositv ratio m. The solid curve is Yih's result: the 

discrete data points are finite element calculations. 
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Figure 3. Neutral stability curves ci = 0 (solid lines) and disturbance growth rates aci (dashed lines) plotted in the plane of 

the wave number a and thickness ratio n. The calculations are for R = 10, m = 20, r = 1,  F = S = 0 
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Table 11. Eigenfunctions corresponding to an unstable interfacial mode; a = 0.5, R = 10, 
m=20, n=3,  r =  1, F = 0 ,  S=O 

Y 4 or $(20 elements) 4 or $ (30 elements) 

- 3.0 
- 2.4 
- 1.8 
- 1.2 
- 0.6 

0.0 
0.2 
0.4 
0.6 
0.8 
1 .o 

0~000000 + 0~000000 i 
0.0521 14 + 0.002605 i 
0.189978 + 0009480i 
0.39665 1 + 0.01 5838 i 
0.666081 + 0.014930i 
1-000000 + 0.000000i 
0.43141 1 + 0.034945 i 
0.127025 + 0.036848 i 
0.005660 + 0.022264 i 

- 0.01 1 139 + 0006690 i 
0.000000 + 0.000000 i 

0.000000 + 000OOOO i 
0.0521 14 + 0.002604 i 
0.189978 + 0.009478 i 
0396651 + 0.015834i 
0.666082 + 0.014926 i 
1 ~OOOOOO + O~OOoooO i 
0.431413 + 00349401 
0,127026 + 0.036842 i 
0.005662 + 0022260 i 

- 0.01 1 139 + 0.006688 i 
0~000000 + 0.000000 i 

neutral stability curves, ci = 0, plotted in the plane of wave number a and thickness ratio n for 
R = 10, in = 20, r = 1, F = S = 0. The dashed curves are curves of constant growth rate (mi) for 
the unstable mode. It is evident from this plot that the instability mode that Yih found for n = 1 
is not limited to long waves, and the thickness ratio plays a significant role. When n > 4; the 
plot shows that long waves (small wave numbers) are stable, but short waves are not. The 
stability results are reversed when n < &, short waves now being stable for certain values of n. 
The magnitude of the growth rate of the unstable disturbance is also noteworthy. For the 
parameters chosen by Yih, the growth rate is of order lo-' or less, depending on the magnitude of 
the wave number, the Reynolds number and viscosity ratio. 

With the finite element technique it is now possible to explore the parameter space to find 
combinations of parameters for which the growth rate of the interfacial mode is large. This will 
provide the needed information to design experiments beyond the parameter range considered 
by Kao and Parkg who were unable to detect with their experimental setup any interfacial 
instability. A detailed investigation of how the growth rate of the interfacial mode depends on 
the parameters R,  r, in, F and S is discussed elsewhere (Yiantsios and Higgins"). 

In addition to the calculation of eigenvalues one can easily find the corresponding eigenfunc- 
tions. In Table I1 we tabulate the eigenfunctions corresponding to an interfacial mode. The 
calculations were carried out using 20 and 30 elements to demonstrate the convergence of the 
method. 

An obvious concern is whether the inherent accuracy of the finite element algorithm is limited by 
round-off error in the determination of C; In order to find C; it is necessary only to invert M 
given by (20). The elements of M are functions of the wave number a, the density ratio r, and the 
layer thickness ratio n. Note, the last-mentioned parameter enters implicitly through the definition 
of the shape functions Ni. Whether or not round-off error is an issue in determining C; is best 
addressed by calculating the condition number for M: 

where 1 ) .  denotes the 2-norm for the matrix (Golub and Van Loan"). To calculate k2 we used the 
singular value decomposition technique to find the singular values of M and then used the result 
that 

k 2 W )  = 0 1 / 0 2  (24) 
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Table 111. Condition number k,(M) 

c? 

0.001 
0.0 1 
0 1  
1 
10 
100 

r 
0 1  
1 
10 

n 
001 
0.1 
1 
10 
100 

k2 (MI 
013393 x lo4 
0.13393 x lo4 
013386 x lo4 
0.12897 x lo4 
0.13275 x lo4 
082019 x lo4 

k m )  
0.11396 x lo5 
0.12897 x lo4 
011396 x lo5 

0.12862 x 10" 
012676 x lo6 
0.12897 x lo4 
0.11949 x lo4 
036239 x lo4 

k,(W 

r = 1 ,  n = l  

a=1,  n = l  

a = l ,  r = l  

where 0,  and 0, are the maximum and minimum singular values of M .  For details of the procedure, 
see Golub and Van Loan." In Table I11 the condition number k, (M)  is tabulated for 
representative values of a,r and n. 

Consider the case analysed by Yih, i.e. r = n = 1. We note from Table I11 that for wave numbers 
in the range 0.001 < a <  100, k, is O(103). Thus M is mildly ill-conditioned, and with double 
precision arithmetic the inversion of C, should not be a limiting factor in determining the 
eigenvalues. That the eigenvalues found by the finite element method are in excellent agreement 
with Yih's results confirms this. 

On the other hand, when the layer thickness ratio is varied, k,  can become excessive. In 
particular, as n decreases, k,  increases, being O( 10') when n = 0.01. The reason for this is related to 
the number of elements and how they are distributed in each fluid layer. In the formulation the co- 
ordinate y is made dimensionless with d , .  Thus the upper fluid layer has a thickness of unity. Since 
we have used the same number of elements in each layer, a decrease in n results in the finite element 
grid in the lower layer becoming disproportionately compressed. When n is decreased by a factor of 
100, the grid in the lower layer is clearly not optimal, which apparently causes k2 to increase. An 
obvious solution is a variable grid for each layer. 

When the density ratio is varied, k, changes accordingly, but as Table I11 shows, k ,  is not overly 
sensitive to changes in r. Also as the data show k ,  is symmetric about r = 1. 

It is also of interest to examine whether the finite element method can determine the eigenvalues 
for additional modes with sufficient accuracy. Unfortunately, in the case of superposed fluids, no 
detailed comparisons can be made: theoretical results for the stability of superposed fluids are 
available only for the most unstable mode. However, when a, = a,, m = r = 1, F = S = 0 the 
foregoing finite element formulation describes the stability of plane Poiseuille flow of a single fluid, 
a case that has been studied extensively in the Indeed, Orszag' has calculated the 
most unstable mode and, according to sign and magnitude of the imaginary part, has tabulated the 
eigenvalues for 31 additional modes when a = 1, R = 10,000. These values are reputed to be 
the most accurate available in the literature, and serve therefore as a means for evaluating the 
accuracy of the finite element method presented here. 
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In Table IV we compare the eigenvalues calculated by the finite element method with those 
listed by Orszag.' When 30 elements were used, the finite element method determines the real part 
of the most unstable mode to within one part in a thousand. However, the error in the imaginary 
part is about 24 per cent. Although these results show that there is a significant improvement in the 
accuracy of the imaginary part for 5 additional modes, the accuracy does become progressively 
worse for modes beyond 6. When 50 elements were used, the accuracy was improved, and Table IV 
shows that the imaginary part of the most unstable mode is now within 2 per cent of Orszag's value. 
This accuracy is maintained or bettered for the next 16 modes. 

Since the boundary terms (8)-(10) do not enter into the global matrix M, the condition numbers 
calculated for r = n = 1 also apply in the algorithm to determine the eigenvalues for plane 
Poiseuille flow. The fact that k ,  was not excessive for the calculations reported in Table IV suggests 
that the inaccuracy observed in the most unstable mode is not tied directly to round-off error in 
computing C; ' . The likely culprit is then C,, or more precisely 11 C, 11 , 11 C; ' 11 *, which is a measure 
of the round-off error that will contaminate the QR algorithm (Golub and Van Loan'l). 

As noted Li and Kot? grid refinement in the neighbourhood of the critical layer can help. This 
is because the dominant eigenfunction of the Orr-Sommerfeld equation is of order exp( CIR ' '~) , '~  
and varies rapidly in the neighbourhood of the critical layer. When one is dealing with the 
eigenvalue problems, mesh refinement does require some care in order to avoid erroneous 
conclusions, especially when the number of unstable modes is not known a priori. This is because 
different eigenvalues correspond to different eigenfunctions and therefore adaptation of the mesh 
to a particular eigenfunction is likely to give a poor representation for the rest. This possibility 
is shown in Table IV. The dominant eigenvalue calculated with a variable mesh, similar to that 
used by Li and K o ~ , ~  with 30 elements is more accurate than that calculated using a uniform 
mesh with either 50 or 30 elements. However, with a variable mesh the second and third 
eigenvalues are worse and those beyond the third are spurious. In the case of two-layer flow, 
grid refinement is not as critical (unless n << 1) as the unstable mode is an interfacial one, that 
occurs at low Reynolds number. 

SPATIAL DEVELOPMENT O F  SUPERPOSED FLUIDS 

We consider next the steady-state spatial development of two-layer flow in a channel. Two 
immiscible fluid streams are merged in a straight channel. The streams flow side-by-side such that 
sufficiently far downstream of merging, the flow is fully developed and the interface separating the 
layers planar. The asymptotic downstream velocity profile is then given by (1). We confine our 
attention to the region of the flow some distance downstream from the point of merging where the 
flow, though almost fully developed, is still two dimensional. On the assumption that the deviation 
from fully developed flow is small, it is permissible to linearize the steady Navier-Stokes equations 
around (1). The mathematical procedure is described in detail for the single fluid case by Wilson,6 
and for the analogous film flow case by Higgins.16 

The disturbance stream functions that describe the deviations from fully developed flow are 
assumed to behave like 4 ( y )  exp ( - ax) and $(y) exp ( - ax) for the two fluids respectively. 
Substituting expressions of this form into the linearized Navier-Stokes equations results again in 
an eigenvalue problem where a is now the eigenvalue and not a prescribed wave number. The 
governing equations can be easily derived from (3)-(10) by letting c = 0 and replacing ia by - a. It 
should be noted that the eigenvalues with positive real part (decaying modes) have physical 
significance. Furthermore, the eigenvalue with the smallest real part is the most interesting since it 
corresponds to the disturbance mode that persists the longest. 

The application of the finite element method proceeds along the same steps as before and the 
element contributions to the weighted residuals take the form 
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where 
R” = (A,a4 + A,a3 + A2a2 + A,a + A,)$, 

Aoij = m N,N,dy, s, n 

A,, = rR U2NiNjdy, J Is 
Azij = - 2m NiNidy, 

AJi j  = - rR 

A,, = m N;N;dy. 

6. 
S, (NiNJU, + NiNJU2 + N,N,U$)dy, 

s, 
The above hold for the lower fluid and again m and r are replaced by 1 for the upper fluid. Also 

the interfacial conditions introduce changes only at the matrices of element t - 1. The resulting 
non-linear eigenvalue problem can be easily recast into the standard generalized eigenproblem as 
described before. 

In Table V we show the behaviour of the eigenvalues that become dominant (i.e. those with 
the smallest real part) for various viscosity ratios and Reynolds numbers. When m = r = 1, the 
eigenvalue problem is identical to that considered by Wilson.6 At low Reynolds number the 
dominant eigenvalue, a,, is complex. As noted in the Introduction, Bramley and Dennis,’ using a 
spectral method, were unable to reproduce Wilson’s asymptotic results for a, at low Reynolds 
number. The finite element results, on the other hand, are in excellent agreement with Wilson’s 
asymptotic results (see Table V). At high Reynolds number both the spectral and the finite element 
methods give accurate results. For R = 1000 and m = 1 we obtain a, = 0.02169 which compares 
favourably with Wilson’s value, viz. a, = 002168. (NOTE: our definition for the Reynolds number 
differs from Wilson’s by the factor 2/3.) 

Form > 1 the dominant eigenvalue need not correspond to a disturbance mode that is dominant 
at rn = 1. As the viscosity ratio is increased, Table V shows that a new disturbance mode, whose 
eigenvalue is real, dominates the spatial development to fully developed flow. The viscosity ratio at 
which a, becomes dominant increases with increasing Reynolds number. At low Reynolds 
numbers and m close to unity, a, is large (relative to unity) and thus plays no role in the spatial 
development to fully developed flow. Consequently a, was not calculated for all values of m and R 
listed in Table V. 

The calculations described above were done using 7 elements in each layer, resulting in sparse 
matrices of order 104 x 104. The accuracy of the results obtained with this modest number of 
elements suggests that the finite element method coupled with an efficient technique for solving 
sparse eigenvalue problems would be valuable for studying similar kinds of problems. 

CONCLUDING DISCUSSION 

When superposed fluids become unstable they can do so to an interfacial mode. This mode is 
unstable at low Reynolds numbers so that the eigenvalue problem is not numerically ‘stiff, as is the 
case in classical linear stability of plane Poiseuille flow of a single fluid. There the flow is unstable to 
a shear mode that sets in at high Reynolds numbers, and then special care and effort are needed in 
the numerical algorithm to minimize and control round-off error. 
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The Galerkin finite element method developed here is thus ideally suited for studying the stability 
of superposed fluids, especially when the parameters characterizing the flow are outside their 
acceptable range required for conventional perturbation methods. The formulation results in non- 
linear algebraic eigenvalue problem which can be recast as a conventional eigenvalue problem and 
solved efficiently by the Q R  algorithm. One advantage of using the Q R  algorithm is that additional 
modes are calculated along with the most unstable mode. The overhead in computing these 
additional modes is not excessive, however, even for current minicomputers. The present 
calculations, for example, were done on a VAX 11/780 minicomputer, with the nominal CPU time 
to calculate 52 eigenvalues being approximately 10 seconds. 

In order to implement the QR algorithm it is necessary to compute the inverse of C, 
(equation (22)). We have shown that C, is mildly ill-conditioned over much of the parameter space 
when the same number of elements is used in each layer. However, in situations where n<< 1, 
appropriate grid refinement in the lower fluid layer is necessary. 

The foregoing analysis can be extended in a straightforward manner to analyse the stability of 
multiple superposed layers. Instead of (21), the formulation results in an algebraic eigenvalue 
problem of the form 

(AocP + A1cP-’ + . . . .Ap)$ = 0 (26) 

where p denotes the number of layers. Although it is always possible to recast (25) as a generalized 
algebraic eigenvalue problem, as in (22) (see Wilkinson”), the order of the matrix C2 becomes 
( p  x k) x ( p  x k), where k = 2NE - 2. Thus for large p ,  the procedure adopted here for solving 
(22) is likely to be computationally prohibitive. Instead of the QR algorithm approach, it may 
be more feasible to use Stewart’s’ algorithm for computing invariant subspaces of non-Hermitian 
matrices. 

Finally, eigenproblems similar to the Orr-Sommerfeld system investigated here arise also in the 
study oflinear stability of layered film flow down an incline and the asymptotic analysis 
of downstream development of steady viscocapillary film flows,I6 both of which can be analysed by 
the method described in this paper. As an example of the latter, we have analysed the spatial 
development of two-layer flow in a channel. An important application of such problems is the 
construction of vector Robin conditions for inflow/outflow boundary conditions for use in finite 
element analysis of coating flows2’ and coating flow 
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